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Hamiltonian engineering problem

The time evolution of a quantum system depends on the system’s Hamiltonian, a self-adjoint operator
whose eigenvalues correspond to possible energy measurements. For a system with initial density
operator ρ(0) and Hamiltonian H(t), the state at time t is given by

ρ(t) = U(t)ρ(0)U†(t)

where the propagator U(t) is defined by

i~
dU(t)

dt
= H(t)U(t), U(0) = 1 (1)

The total Hamiltonian H(t) can generally be broken into a time-independent system Hamiltonian
and a time-dependent control Hamiltonian

H(t) = Hsystem + Hcontrol(t) (2)

Hamiltonian engineering seeks to design the time-dependent Hamiltonian Hcontrol(t) to control the
system’s evolution so that it appears to evolve under a target “effective” Hamiltonian (Htarget) when
measured stroboscopically. That is,

ρ(Ntc) = Utarget(Ntc)ρ(0)U
†
target(Ntc) (3)

where Utarget is the propagator determined by Htarget, tc is the cycle time, and N ∈ N. If H(t)
determines the propagator U(t), then equation 3 is implied by

U(Ntc) = Utarget(Ntc) (4)

Average Hamiltonian theory

Average Hamiltonian theory is one approach to solving the Hamiltonian engineering problem [1] .
For a system of spins in a magnetic field, the internal Hamiltonian contains a chemical shift term
and a dipolar coupling term
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∑
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)
= HCS + HD (5)

Applying a magnetic field pulse along the transverse axis performs a global rotation of the spins. The
magnetic field pulses manifest themselves as a time-dependent interaction Hrf(t). If a pulse sequence
with cycle time is both cyclic and periodic [2]

Urf(tc) = T exp

(
−i/~

∫ tc

0
Hrf(t)dt

)
= ±1 (cyclic) (6)

Hrf(t) = Hrf(t + Ntc) (periodic) (7)

then, using the Magnus Expansion, the propagator can be given by
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(8)

H
(0)

= 1/tc

∫ tc

0
Urf(t)HintU

†
rf(t)dt (9)

To engineer a target Hamiltonian Ht, the pulse sequence is chosen so that H
(0)

= Ht.
Several pulse sequences have been developed using the average Hamiltonian theory framework [3–5].
For example, the WAHUHA 4-pulse sequence applied to a spin system with Hint given in eq 5 has

the zeroth-order average Hamiltonian H
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= 1
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.

Average Hamiltonian theory assumes that higher-order terms in the Magnus Expansion (eq 8) are
negligible. This is often true in the regime where tc|Hint| � 1, but tc is constrained by experimental
limitations in the accuracy of pulse timings and strengths.

Reinforcement learning

Reinforcement learning (RL) is being investigated as an alternative approach to Hamiltonian en-
gineering for spin systems. “Reinforcement learning is learning what to do–how to map situations
to actions–so as to maximize a numerical reward signal” [6]. RL has been applied to a variety of
different problems, including playing games such as chess or Go [7] and interacting with physical
environments such as balancing a pole [8].

Reinforcement learning (cont.)

The RL paradigm involves an agent that makes observations on the state of the environment,
performs actions on the environment, and receives rewards based on its performance (see figure 1).

Agent (µ : S → A) Environment

Action a ∈ A

State s ∈ S

Reward r

Figure 1: The general reinforcement learning paradigm.
The agent learns a policy function µ : S → A which maps a given state to the action that will lead
to the largest rewards. In many RL algorithms, an action-value function Qµ(s, a) is also learned.
The action-value function gives the expected total rewards by performing action a when in state s,
then following µ.
Several algorithms have been developed for various realizations of the RL problem. Deep deter-
ministic policy gradient (DDPG) uses neural networks to approximate the policy µ(s|θµ) and the
action-value function Q(s, a|θQ) for continuous action spaces [8]. Both µ and Q are trained using
gradient-based methods. Q is optimized by minimizing the loss function

L(θQ) = E
[
(Q(s, a|θQ)− yt)2

]
(10)

where
yt = r(s, a) + γQ(s′, µ(s′)|thetaQ)

s′ is the state after performing action a. The policy µ is optimized by maximizing the performance
J (generally taken to be the action-value function Q) via gradient ascent

∇θµJ = E
[
∇θµQ(s, µ(s|θµ))

]
(11)

The gradients are estimated from a random subset of experiences (s, a, r, s′).
In [9], a hybrid algorithm called Evolutionary Reinforcement Learning (ERL) uses both DDPG
and genetic algorithms to prevent premature convergence to local optima and speed up learn-
ing. In ERL, a population of policy functions are maintained, as well as gradient-based
policy and action-value functions. A diagram of the algorithm is presented in figure 2.

Figure 2: The general overview of the ERL algorithm, reproduced from [9].

Applying RL to Hamiltonian engineering

In the case of Hamiltonian engineering, the states correspond to the propagators of the system
at different times, the actions correspond to pulses or delays, and the reward signal quantifies the
degree to which the system has evolved under the target effective Hamiltonian. The fidelity of two
unitary operators can be quantified by

fidelity(U
†
target, U) =

∣∣∣∣∣∣Tr

U†targetU

2N

∣∣∣∣∣∣ (12)

and takes on values between 0 and 1, where 1 implies the two unitary operators are equal. Using
this definition of fidelity, the rewards in the RL algorithm are

r = − log
(

1− fidelity(Utarget, Uexp)τ/t
)

(13)

The exponent τ/t makes rewards comparable across different duration pulses sequences.
The actions are magnetic field pulses that perform global rotations, and can therefore be
parametrized by the axis of rotation, the rotation angle α, and the time dt over which the ro-
tation is performed. The axis of rotation is assumed to lie in the xy-plane, so a single pulse can be
characterized by the tuple (φ, α, dt) ∈ [−π, π] × [−αmax, αmax] × [tmin, inf). The state is repre-
sented by the sequence of all previous actions performed. The state and actions are represented by
values in the interval [−1, 1] according to the following map

φ ∈ [−π, π], φ 7→ φ/π (14)

α ∈ [−2π, 2π], α 7→ α/2π (15)

t ∈ [0, 5 · 10−6], t 7→ log10(t + 10−7) + 7

0.853785
− 1 (16)

This encoding of action and state representations is necessary for the training and stability of the
neural networks.

Results and further work

Applying ERL to Hamiltonian engineering has so far been unsuccessful. Neither the gradient-based
nor population policy functions have consistently achieved rewards above 3, which corresponds to a
fidelity of 0.999. For experimental applications, this is far too low a fidelity to be useful. The poor
performance may be due to poor choice of hyperparameters (such as the learning rate or the number
of observations from which to learn) or ineffective exploration of both state and action space.
In addition to varying hyperparameters or changing the noise processes used in ERL, reformulating
the problem in terms of discrete actions (i.e. only performing π/2 rotations along the x or y axis)
could be promising. This has generally been the approach within the average Hamiltonian theory
framework, as well as with preliminary investigations into reinforcement learning for Hamiltonian
engineering. Finally, including experimental errors or constraints, such as phase errors or finite
pulse widths, would more accurately reflect the pulse sequence performances.
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