Whitfield Group

QUANTUM COMPUTATION AND QUANTUM INFORMATION RESEARCH

QUANTUM SIMULATION USING A TRUNCATED TAYLOR SERIES

OMAR ALSAEED

 $\langle \Psi \, | \, W \rangle$ Whitfield $\langle \Psi \, | \, G \rangle$ Group

GENERAL DECOMPOSITION THEORY OF EXPONENTIAL OPERATORS

Masuo Suzuki

Department of Physics, University of Tokyo, Tokyo 113, Japan

First published 1993 First reprint 1998

RESEARCH ARTICLES

Universal Quantum Simulators

Seth Lloyd

Feynman's 1982 conjecture, that quantum computers can be programmed to simulate any local quantum system, is shown to be correct.

SCIENCE • VOL. 273 • 23 AUGUST 1996

PRODUCT FORMULAS

Simulating Hamiltonian dynamics with a truncated Taylor series

Dominic W. Berry¹, Andrew M. Childs^{2,3,4,5}, Richard Cleve^{2,5,6}, Robin Kothari^{2,6,7}, and Rolando D. Somma⁸
 ¹Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109, Australia
 ²Institute for Quantum Computing, University of Waterloo, ON N2L 3G1, Canada
 ³Department of Combinatorics & Optimization, University of Waterloo, ON N2L 3G1, Canada
 ⁴Department of Computer Science, Institute for Advanced Computer Studies, and Joint Center for Quantum Information and Computer Science, University of Maryland, College Park, MD 20910, USA
 ⁵Canadian Institute for Advanced Research, Toronto, Ontario M5G 128, Canada
 ⁶School of Computer Science, University of Waterloo, ON N2L 3G1, Canada
 ⁷Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
 ⁸Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA (Dated: December 16, 2014)

We describe a simple, efficient method for simulating Hamiltonian dynamics on a quantum computer by approximating the truncated Taylor series of the evolution operator. Our method can simulate the time evolution of a wide variety of physical systems. As in another recent algorithm, the cost of our method depends only logarithmically on the inverse of the desired precision, which is optimal. However, we simplify the algorithm and its analysis by using a method for implementing linear combinations of unitary operations to directly apply the truncated Taylor series.

"... nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical, and by golly it's a wonderful problem, because it doesn't look so easy."

1982 - Richard Feynman

Spectroscopic signatures of localization with interacting photons in superconducting qubits

D P. Roushan^{1,*,†}, **D** C. Neill^{2,†}, **D** J. Tangpanitanon^{3,†}, **D** V. M. Bastidas^{3,†}, A. Megrant¹, R. Barends¹, Y. Chen¹, **D** Z. Che... + See all authors and affiliations

Science 01 Dec 2017: Vol. 358, Issue 6367, pp. 1175-1179 DOI: 10.1126/science.aao1401

Visual Science/Google

Query complexities

Chunga

Divide and conquerOr Quantum walks	Algorithms for implementing $\exp(-iHt)$	Query complexity (assume $ H _{max} \le 1$)
 Divide and conquer 	Product formulas [BACS07,CK11]	$O\left(d^3t(dt/\epsilon)^{1/2k}\right)$
Quantum walks	Phase estimation on quantum walks [Chi08,BC10]	$O(dt/\sqrt{\epsilon})$
1 Divide and conquer	Fractional queries [BCCKS13] or Truncated Taylor series [BCCKS14] (LCU + OAA)	$O\left(d^2t \frac{\log(d^2t/\epsilon)}{\log\log(d^2t/\epsilon)}\right)$
2 Quantum walks	Linear combination of quantum walks [BCK15] (LCU + OAA)	$O\left(dt \frac{\log(dt/\epsilon)}{\log\log(dt/\epsilon)}\right)$
Lower bound	Shown in [BCCKS13,BCK15]	$\Omega\left(dt + \frac{\log(1/\epsilon)}{\log\log(1/\epsilon)}\right)$
Quantum walks	Quantum signal processing [LC16]	$O(dt + \log(1/\epsilon))$
 Divide and conquer 	Qubitization/Quantum signal processing [LC17]	$O(d^2t + \log(1/\epsilon))$
[BACS07] Berry, Ahokas, Cleve, & Sanders. [CK11] Childs & K. [Chi08] Childs. [BC10] Berry & Childs. [BCCKS13,14] Berry, Childs, Cleve, K., & Somma [BCK15] Berry, Childs, & K. [LC16,17] Low &		

$H\Psi = E\Psi$

H is Hamiltonian Operator $H = \frac{-\hbar^2}{2m} \nabla^2 - V(r)$