Rufus Boyack

Personal Information

Nationality: New Zealand Email: rufus.boyack@dartmouth.edu Phone (office): extension 62949

Research Interests

My research interests are focused on transport signatures and emergent phenomena in superfluids and superconductors, and critical phenomena and phase transitions in spin liquids. I am broadly interested in field-theoretical approaches to understanding condensed matter systems.

Education

University of Chicago, Chicago, IL, USA

Ph.D., Physics, 2017

- Thesis title: Establishing a consistent theory of transport in strongly correlated matter
- Supervisor: Prof. Kathryn Levin

M.S., Physics, 2013

Victoria University of Wellington, Wellington, NZ

M.Sc. (Distinction), Physics, 2011

- Thesis title: The theory of the hydrogen molecule ion, scalar beams, and scattering by spheroids
- Supervisor: Prof. John Lekner

Grad. Dipl. Sci., Mathematics, 2011

B.Sc. Hons. (First class), Physics, 2010

B.Sc., Mathematics and Physics, 2009

Hutt Valley High School, Lower Hutt, NZ

NCEA Level 3, 2005

NCEA Level 2, 2004

NCEA Level 1, 2003

Professional Appointments

Dartmouth College, Hanover, NH, USA

Assistant Professor 2022 -

Postdoctoral Appointments

Université de Montréal, Montréal, QC, Canada

Postdoctoral scholar, 2020-2022

• Supervisor: Prof. William Witczak-Krempa

University of Alberta, Edmonton, AB, Canada

Theoretical Physics Institute fellow, 2017-2020

• Supervisors: Prof. Frank Marsiglio and Prof. Joseph Maciejko

Research Experience

Postdoctoral fellow

Physics department, Université de Montréal

Supervisor: Prof. William Witczak-Krempa

Achievements:

(i) Studied monopole scaling dimensions in transitions from a Dirac spin liquid to two chiral spin liquids.

2020-2022

2017-2020

2014-2017

2010-2011

2009

(ii) Investigated thermal Hall conductivity response in the pseudogap phase of the cuprates.

Postdoctoral fellow

Theoretical Physics Institute, University of Alberta

Supervisors: Prof. Joseph Maciejko and Prof. Frank Marsiglio

Achievements:

(i) Studied deconfined quantum critical spin liquids using large-N and ϵ -expansion methods.

- (ii) Derived a functional-integral-based formalism for Eliashberg theory and its Gaussian extension.
- (iii) Investigated signatures of the Hall conductivity in the pseudogap phase of the cuprates.

Research Assistant

James Franck Institute, University of Chicago

Supervisor: Prof. Kathryn Levin

Achievements:

(i) Derived the complete expression for the superfluid density of the Fulde-Ferrell superfluid.

(ii) Formulated a general diagrammatic method for studying gauge-invariant electromagnetic response.

(iii) Proved how to ensure thermodynamic sum rule compatibility for fermionic superfluids.

Research Assistant

Physics department, Victoria University of Wellington

Supervisor: Prof. John Lekner

Achievements:

(i) Derived a transcendental equation to determine the eigenvalue in the oblate spheroidal wave equation.

(ii) Formulated a partial wave scattering theory of spheroids in analogue with the spherical case.

Summer Research Assistant

Physics department, Victoria University of Wellington

Supervisor: Prof. Eric Le Ru

Achievements: Implemented a numerical method for studying EM scattering by spheroidal nanoparticles.

Journal

PUBLICATIONS

Journal articles

- 35. Anomalous Dimensions of Monopole Operators at the Transitions between Dirac and Topological Spin Liquids [Éric Dupuis, Rufus Boyack, and William Witczak-Krempa] Phys. Rev. X **12**, 031012 (2022).
- Heat-bath approach to anomalous thermal transport: Effects of inelastic scattering [Zhiqiang Wang, Rufus Boyack, and K. Levin] Phys. Rev. B 105, 134302 (2022).
- Triangular Pair Density Wave in Confined Superfluid ³He [Pramodh Senarath Yapa, Rufus Boyack, and Joseph Maciejko] Phys. Rev. Lett. **128**, 015301 (2022).
- 32. Unified approach to electrical and thermal transport in high-T_c superconductors [Rufus Boyack, Zhiqiang Wang, Qijin Chen, and Kathryn Levin] Phys. Rev. B **104**, 064508 (2021).
- 31. Functional-integral approach to Gaussian fluctuations in Eliashberg theory [Mason Protter, Rufus Boyack, and Frank Marsiglio] Phys. Rev. B **104**, 014513 (2021).
- 30. Summation of certain trigonometric series with logarithmic coefficients [Rufus Boyack] J. Analysis **30**, 119 (2022).
- 29. Quantum phase transitions in Dirac fermion systems [Rufus Boyack, Hennadii Yerzhakov, and Joseph Maciejko] Eur. Phys. J. Spec. Top. **230**, 979 (2021).
- 28. Critical exponents for the valence-bond-solid transition in lattice quantum electrodynamics [Rufus Boyack, Joseph Maciejko] Proceedings of the 11th International Symposium on Quantum Theory and Symmetries (QTS-XI), edited by M. B. Paranjape et al. (Centre de Recherches Mathématiques CRM Series in Mathematical Physics, Springer, 2021), pp. 337-345.

- The bound-state solutions of the one-dimensional hydrogen atom [Rufus Boyack, Frank Marsiglio] Am. J. Phys 89, 418 (2021).
- Thermodynamics of Eliashberg theory in the weak-coupling limit [Sepideh Mirabi, Rufus Boyack, and Frank Marsiglio] Phys. Rev. B 102, 214505 (2020).
- 25. Critical properties of the valence-bond-solid transition in lattice quantum electrodynamics [Nikolai Zerf, Rufus Boyack, Peter Marquard, John A. Gracey, and Joseph Maciejko] Phys. Rev. D 101, 094505 (2020).
- 24. Electromagnetic response of superconductors in the presence of multiple collective modes [Rufus Boyack, Pedro L. e S. Lopes] Phys. Rev. B **101**, 094509 (2020).
- 23. Eliashberg theory in the weak-coupling limit: Results on the real frequency axis [Sepideh Mirabi, Rufus Boyack, Frank Marsiglio] Phys. Rev. B **101**, 064506 (2020).
- Stabilized Pair Density Wave via Nanoscale Confinement of Superfluid ³He [A.J. Shook, V. Vadakumbatt, P. Senarath Yapa, C. Doolin, R. Boyack, P.H. Kim, G.G. Popowich, F. Souris, H. Christani, J. Maciejko, J.P. Davis] Phys. Rev. Lett. 124, 015301 (2020).
- Critical properties of the Néel-to-algebraic spin liquid transition [Nikolai Zerf, Rufus Boyack, Peter Marquard, John A. Gracey, Joseph Maciejko] Phys. Rev. B 100, 235130 (2019).
- Deconfined criticality in the QED₃ Gross-Neveu-Yukawa model: The 1/N expansion revisited [Rufus Boyack, Ahmed Rayyan, and Joseph Maciejko] Phys. Rev. B 99, 195135 (2019).
- Combined effects of pairing fluctuations and a pseudogap in the cuprate Hall coefficient [Rufus Boyack, Xiaoyu Wang, Qijin Chen, and Kathryn Levin] Phys. Rev. B 99, 134504 (2019).
- Restoring gauge invariance in conventional fluctuation corrections to a superconductor [Rufus Boyack] Phys. Rev. B 98, 184504 (2018).
- 17. Critical behaviour of the QED₃-Gross-Neveu-Yukawa model at four loops [Nikolai Zerf, Peter Marquard, Rufus Boyack, Joseph Maciejko] Phys. Rev. B **98**, 165125 (2018).
- 16. Transition between algebraic and \mathbb{Z}_2 quantum spin liquids at large N [Rufus Boyack, Chien-Hung Lin, Nikolai Zerf, Ahmed Rayyan, Joseph Maciejko] Phys. Rev. B **98**, 035137 (2018).
- 15. Cuprate diamagnetism in the presence of a pseudogap: Beyond the standard fluctuation formalism [Rufus Boyack, Qijin Chen, Andrey A. Varlamov, Kathryn Levin] Phys. Rev. B **97**, 064503 (2018).
- 14. Collective mode contributions to the Meissner effect: Fulde-Ferrell and pair-density wave superfluids [Rufus Boyack, Chien-Te Wu, Brandon M. Anderson, Kathryn Levin] Phys. Rev. B **95**, 214501 (2017).
- Gauge-invariant theories of linear response for strongly correlated superconductors [Rufus Boyack, Brandon M. Anderson, Chien-Te Wu, Kathryn Levin] Phys. Rev. B 94, 094508 (2016).
- Two-dimensional spin-imbalanced Fermi gases at nonzero temperature: Phase separation of a noncondensate [Chien-Te Wu, Rufus Boyack, Kathryn Levin] Phys. Rev. A 94, 033604 (2016).
- Going beyond the BCS level in the superfluid path integral: A consistent treatment of electrodynamics and thermodynamics [Brandon M. Anderson, Rufus Boyack, Chien-Te Wu, Kathryn Levin] Phys. Rev. B 93, 180504(R) (2016).
- Quasicondensation in Two-Dimensional Fermi Gases [Chien-Te Wu, Brandon M. Anderson, Rufus Boyack, Kathryn Levin] Phys. Rev. Lett. 115, 240401 (2015).
- Topological effects on transition temperatures and response functions in three-dimensional Fermi gases [Brandon M. Anderson, Chien-Te Wu, Rufus Boyack, Kathryn Levin] Phys. Rev. B 92, 134523 (2015).
- Signatures of pairing and spin-orbit coupling in correlation functions of Fermi gases [Chien-Te Wu, Brandon M. Anderson, Rufus Boyack, Kathryn Levin] Phys. Rev. B 91, 220504(R) (2015).
- Exact correlation functions in the cuprate pseudogap phase: Combined effects of charge order and pairing [Rufus Boyack, Chien-Te Wu, Peter Scherpelz, Kathryn Levin] Phys. Rev. B 90, 220513(R) (2014).
- Shear viscosity and imperfect fluidity in bosonic and fermionic superfluids [Rufus Boyack, Hao Guo, Kathryn Levin] Phys. Rev. B 90, 214501 (2014).
- Confluent Heun functions and separation of variables in spheroidal coordinates [Rufus Boyack, John Lekner] J. Math. Phys 52, 073517 (2011).

- 4. Non-existence of separable spheroidal beams [Rufus Boyack, John Lekner] J. Opt. 13, 085701 (2011).
- 3. Axisymmetric scattering of scalar waves by spheroids [John Lekner, Rufus Boyack] J. Acoust. Soc. Am. **129**, 3465 (2011).
- 2. Constraints on spheroidal beam wavefunctions [John Lekner, Rufus Boyack] Opt. Lett. 35, 3652 (2010).
- 1. Investigation of particle shape and size effects in SERS using T-matrix calculations [Eric C. Le Ru, Rufus Boyack] Phys. Chem. Chem. Phys. **11**, 7398 (2009).

Book reviews

1. Electrostatics of conducting cylinders and spheres [Rufus Boyack], Contemporary Physics 1-2, (2022).

Honours and Awards

Student Awards

University of Chicago:

• Physics department distinguished service award	2016
• Physical sciences teaching prize (Top teaching assistant in the physical sciences division)	2015
• Sachs fellowship	2012
Victoria University of Wellington:	
• Victoria Masters by thesis scholarship	2010
• Dan F. Jones scholarship in Science	2009
• Victoria Graduate Award	2009
• Florance award in Physics (Top 3rd year Physics student)	2008
• Noel Ryder prize in Physics (Top 2nd year Physics student)	2007
• Macmorran prize in Mathematics (Top 2nd year Mathematics student)	2007
Hutt Valley High School:	
• Top 7th form physics student	2005
• Calculus scholarship	2005

Presentations

Invited talks

- Quantum materials Canada 2.0; Jouvence, Québec, Canada: "Anomalous dimensions of monopole operators at the transitions between Dirac and topological spin liquids" 26 May 2022
- Dartmouth College colloquium; Virtual: "Electromagnetic Response of Superconductors in the Presence of Multiple Collective Modes" 2 March 2022
- Centre de recherches mathématiques Séminaire Physique Mathématique, Université de Montréal: "Critical properties of quantum spin liquid phase transitions" 14 September 2021
- Quantum fluids and solids (QFS) 2019; Edmonton, Alberta, Canada: "Diamagnetism and Hall conductivity in the cuprates" 12 August 2019
- Theoretical Physics Institute (TPI) seminar, University of Alberta: "Collective mode contributions to the Meissner effect in Fulde-Ferrell and pair-density wave superfluids" 9 November 2017
- Banff International Research Station (BIRS) BIRS Workshop17w2694: Contemporary Topics in Mathematical Physics; Banff, Alberta, Canada: "Importance of amplitude collective modes in the path integral approach to Fermi superfluids" 29 October 2017

March meeting talks

- APS March meeting; Chicago, Illinois, USA: "Anomalous dimensions of monopole operators at the transitions between Dirac and topological spin liquids" 15 March 2022
- APS March meeting; Virtual: "The effect of the pseudogap on thermomagnetic transport in cuprates" 18 March 2021

- APS March meeting; Boston, Massachusetts, USA: "Deconfined criticality in the QED₃ Gross Neveu Yukawa model" 7 March 2019
- APS March meeting; Los Angeles, California, USA: "Cuprate diamagnetism in the strong pairing fluctuation formalism" 9 March 2018
- APS March meeting; New Orleans, Louisiana, USA: "Collective mode contributions to the superfluid density in Fulde-Ferrell superfluids" 15 March 2017
- APS March meeting; Baltimore, Maryland, USA: "Gauge invariant theories of strongly correlated Fermi superfluids" 17 March 2016
- APS March meeting; San Antonio, Texas, USA: "Shear viscosity to entropy density ratios: (im)perfect fluidity in Bosonic and Fermionic superfluids" 2 March 2015

Student talks

• UChicago Society of Physics (SPS):	
"Classical Physics as Geometry: Geometrodynamics"	20 April 2015
• UChicago Society of Physics (SPS):	
"Interpretations of Quantum Mechanics: Ensemble vs Individual Interpretations"	14 April 2014

STUDENT SUPERVISION

Masters students

• Simon Martin, Université de Montréal: "Conductivité pour des fermions de Dirac prés d'	'un point critique
quantique"	2021
• Mason Protter, University of Alberta: "Particle-hole fluctuations in superconductors"	2019
• Sepideh Mirabi, University of Alberta: "Weak-coupling Eliashberg theory"	2019

TEACHING EXPERIENCE

Lab demonstrator – Victoria University of Wellington:	
PHYS 235 Analogue Electronics	2009 & 2010
PHYS 234 Digital Electronics	2009
Teaching Assistant – University of Chicago:	
PHYS 236 Solid State Physics	2013
PHYS 234 Quantum Mechanics 1	2013 & 2016
PHYS 227 Electromagnetism 2	2014 & 2015
PHYS 225 Electromagnetism 1	2014
PHYS 197 Statistical Mechanics	2012, 2013 & 2014
PHYS 133 Waves & Optics	2012 & 2013
PHYS 132 Electromagnetism	2012 & 2013
PHYS 131 Mechanics	2011 & 2013
Lectures – University of Alberta:	
Graduate physics Journal Club (10 lectures): Fluctuation theory of superconductors	2018
Graduate physics Journal Club (3 lectures): Topological aspects of field theory	2019
PHYS 699 Advanced statistical mechanics (2 lectures): Chern-Simons theory	2018

Professional Activities

Referee service

Annals of physics, Nature communications, Physical Review Letters, Physical Review B, Quarterly Journal of Mechanics and Applied Mathematics, Substantia.