Eric R. Fossum, Thayer School, Dartmouth College

Title: "Quanta Image Sensor: Every Photon Counts" (Video)

Abstract:  About 10 years after the invention of the CMOS image sensor at the NASA Jet Propulsion Laboratory in the early 1990’s, I was asked to write a book chapter on the future of digital still cameras. I proposed a binary, photon-counting image sensor now called the Quanta Image Sensor. It was a sort of wild idea at the time, but somewhat surprisingly, it now seems technically feasible. In this talk a brief review of the CMOS image sensor and a few fundamental physical principles behind its operation will be given. The Quanta Image Sensor will then be introduced. Conceptually it consists of perhaps one billion specialized pixels called “jots” that are read out at perhaps 1000 frames per second. Each jot is sensitive enough to count a single photoelectron. Recent progress at Dartmouth in achieving the QIS will be presented. We have shown the feasibility of making small (visible light) arrays that can count single photoelectrons at room temperature without the use of avalanche multiplication with good accuracy. The devices, implemented in a 65nm technology-node, backside-illuminated, CMOS image sensor foundry, also feature dark current less than 0.1e-/s at room temperature. The jot device and high speed readout electronics will be discussed, as well as the possible paradigm shift in image capture for scientific and consumer imaging that can now be envisioned and enabled.